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The statistics of low energy states of the 2D Ising spin glass with +1 and −1 bonds are
studied for L × L square lattices with L ≤ 48, and p = 0.5, where p is the fraction of
negative bonds, using periodic and/or antiperiodic boundary conditions. The behavior
of the density of states near the ground state energy is analyzed as a function of L ,
in order to obtain the low temperature behavior of the model. For large finite L there
is a range of T in which the heat capacity is proportional to T 5.33±0.12. The range
of T in which this behavior occurs scales slowly to T = 0 as L increases. Similar
results are found for p = 0.25. Our results indicate that this model probably obeys
the ordinary hyperscaling relation dν = 2 − α, even though Tc = 0. The existence of
the subextensive behavior is attributed to long-range correlations between zero-energy
domain walls, and evidence of such correlations is presented.
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In 1977, Thouless, Anderson and Palmer (1) (TAP) performed a mean-field theory
analysis of the ring diagrams which contribute to the free energy of the Ising spin
glass. (2,3) They found that, above the critical temperature Tg , the contribution of
these ring diagrams was subextensive. This means that, while the sum of these
diagrams is divergent at Tg , their contribution at any T > Tg can be neglected in
the thermodynamic limit. (3) Therefore, in this limit, no signature of the transition
is visible in the equilibrium thermodynamic functions for T > Tg . However, one
can still study the critical scaling behavior of finite systems.

While it is true that hyperscaling is always violated in a mean-field theory,
TAP showed that a spin glass has severe fluctuations of the order parameter even
at the mean-field level. Later, it was shown by Sompolinsky and Zippelius (4,5)

that the Ising spin glass also violates the fluctuation-dissipation theorem. Thus
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one should not be surprised if it turns out that the spin glass does not obey other
relations which work for ordinary phase transitions.

In this work we analyze data obtained from exact calculations of the density
of low-energy states for finite two-dimensional (2D) lattices. The same data have
also been used to study the scaling behavior of domain walls for this model. (6) We
will discover that an unusual effect, similar to the violation of hyperscaling found
in mean-field theory, also occurs in 2D. The data were obtained using a slightly
modified version of the computer program of Vondrák, (7,8) which is based on the
Pfaffian method. Our data are completely consistent with the data of Lukic et al.,
(10,11) which were obtained using the same algorithm. Our analysis of the heat
capacity is more detailed than theirs, however, and thus we arrive at somewhat
different conclusions.

In two dimensions (2D), the spin-glass phase is not stable at finite tempera-
ture. Because of this, it is necessary to treat cases with continuous distributions
of energies (CDE) and cases with quantized distributions of energies (QDE) sep-
arately. (12,13) In this work we will study the QDE case.

The Hamiltonian of the EA model for Ising spins (2) is

H = −
∑

〈i j〉
Ji jσiσ j , (1)

where each spin σi is a dynamical variable which has two allowed states, +1 and
−1. The 〈i j〉 indicates a sum over nearest neighbors on a simple square lattice of
size L × L . We choose each bond Ji j to be an independent identically distributed
quenched random variable, with the probability distribution

P(Ji j ) = pδ(Ji j + 1) + (1 − p)δ(Ji j − 1), (2)

so that we actually set J = 1, as usual. Thus p is the concentration of antiferro-
magnetic bonds, and (1 − p) is the concentration of ferromagnetic bonds. Here
we will discuss primarily the equal mixture case, p = 0.5, but results for p = 0.25
will also be given.

The ground state (GS) entropy is defined as the natural logarithm of the
number of ground states. For each sample the GS energy E0 and GS entropy S0

were calculated for the four combinations of periodic and antiperiodic toroidal
boundary conditions along each of the two axes of the square lattice. When
p = 0.5, all four of these types of boundary conditions are statistically equivalent.

Data were obtained for lattices of sizes L = 7, 8, 11, 12, 15, 16, 21, 24, 29,
32, 41 and 48. For each L , 500 different random sets of bonds were studied, for
each of the four boundary conditions. Thus, combining the data for the different
boundary conditions, we have 2000 values of E0 and S0 for each L .

With the boundary conditions we are using, for which there is no well-defined
surface, the value of E0 averaged over samples of the random bonds, is expected
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Fig. 1. (color online) Finite-size scaling of E0/L2 vs. 1/L2.

to obey

E0/L2 = e0 + ae/L2 (3)

to lowest order in L . Figure 1 shows that this works well, and that the value of
e0 obtained from our data is e0 = −1.40151 ± 0.00027. In principle, higher order
corrections exist, (9) but they are not necessary at the level of precision of our data.
This agrees with the result found by Lukic et al. (10) All statistical error estimates
shown in this work represent one standard deviation. The best estimate of e0 is
still the one of Palmer and Adler, (14) which uses a method for which one can go
to much larger L , because the entropy is not calculated.

The finite-size scaling behavior of S0 is slightly more complex. Lukic et al. (10)

used a single correction-to-scaling term, with an exponent −(2 + �S). From a
fundamental viewpoint, (15) however, when �S is positive the natural form to use
when adding another fitting parameter is

S0/L2 = s0 + as/L2 + bs/L4. (4)

In Fig. 2 we see that this form works well, and gives a value of s0 = 0.07211 ±
0.00015. This value is slightly higher than the one quoted by Lukic et al., but the
difference comes primarily from the different form of the fitting function rather
than from differences in the data. By comparing with the work of Bouchaud,
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Fig. 2. (color online) Finite-size scaling of S0/L2 vs. 1/L2.

Krzakala and Martin, (15) one sees that Lukic et al. have made a sign error, and
that their fit actually uses a negative value for �S , which is incorrect. (16,17)

While our values of the energy and entropy of the GS of finite L × L lattices
for p = 0.5 are generally consistent with those of other workers, our results for
L = 32 differ substantially with those reported by Blackman and Poulter. (18) (See
Figs. 7 and 8 of their paper.) The origin of this discrepancy is unclear, but it
appears to be too large to be explained by the different boundary conditions used
by them. Their numbers of samples computed are rather small, and it may be that
they have simply underestimated their statistical errors. However, their algorithm,
unlike the one used here, does not use exact integer arithmetic to calculate the
partition function. Therefore, it is likely that they have a problem with roundoff
errors. In a strongly correlated system such as the one we are studying, substantial
roundoff errors can result in distributions which are too narrow.

In order to obtain information about the low temperature behavior, it is
useful to study the scaling with L of S1 − S0, which is the logarithm of the ratio
of the degeneracies of the lowest excited state and the GS. (10,16,17,19) We found
that

av(ln(S1 − S0)) = ρ ln(ln((L2)!)) + 0.528 ± 0.011, (5)
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Fig. 3. (color online) Scaling of S1 − S0 with L .

with

ρ = 0.1921 ± 0.0015 (6)

gives an excellent fit for L > 10, as shown in Fig. 3. av() is a configuration average
over random samples. The points for L = 7 and 8 (not shown in the figure) are
below the fitted line, due to corrections to scaling at small L .

The choice ln(ln((L2)!)) may appear arbitrary to the reader, but it was sug-
gested by the behavior of the fully frustrated 2D Ising model. (16,17) In principle,
if one could go to very large values of L , one could obtain ρ by plotting the
data against 2 ln(L). From Stirling’s approximation one sees immediately that the
difference between using 2 ln(L) and ln(ln((L2)!)) is a logarithmic correction to
scaling. This logarithmic correction appears to be present in the data, however,
and a much better fit is obtained if one does things as shown here.

If one uses 2 ln(L − 3) an excellent fit over the range of the data is obtained.
However, this seems completely artificial to the author. In any case the value of
ρ = 0.1948 ± 0.0008 which one finds from this form is close to the one shown in
Fig. 3. (The reason why the statistical error in this number is so small is that no
contribution from the uncertainty in the fitting parameter “3” is included.)



1118 Fisch

8 12 16 20 24 28 

1

5

10

50

100

500

1000
L=48 SQ
p=0.5

500 samples
with 4 BC

N
(S

1 -
 S

0)

S
1
 - S

0

Fig. 4. Histogram of the distribution of S1 − S0 for L = 48.

The reason for taking the configuration average of ln(S1 − S0) rather than
taking the logarithm of av(S1 − S0) is that in this way we find the most probable
value. (20,21) The probability distributions for S1 − S0 are highly skewed, and the
most probable value scales differently with L than av(S1 − S0) does. To illustrate
this point, in Fig. 4 we show a histogram of the distribution of S1 − S0 for the
L = 48 lattices. If one plots the data using av(S1 − S0), one finds an apparent value
for ρ of 0.233(3). Using the median value gives 0.222(3). It is the typical or most
probable value which is the experimentally observable quantity, as established by
Edwards and Anderson(2) for the spin glass.

From this analysis, we obtain the typical value of S1 − S0 to be

S1 − S0 = f (L) ≈ A[ln((L2)!)]ρ, (7)

with A = 1.696 ± 0.019, or, using Stirling’s approximation,

f (L) ≈ A[L2(2 ln(L) − 1)]ρ. (8)

It follows immediately that the scaling of S1 − S0 with L is approximately a power
law, with an exponent close to 0.4, times ln(L). This variation with L is much more
rapid than the hypothesis of Wang and Swendsen, (19) who argued for a dependence
like 4 ln(L). To this extent, it agrees with the claims of Jörg et al. (11)
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To obtain the actual behavior of the low temperature specific heat, we must
carry the analysis further. The heat capacity of a sample of size L × L at temper-
ature T is given by

C(L , T ) = 〈(E(L) − 〈E(L)〉)2〉/T 2, (9)

where the angle brackets indicate a thermal average, and we are using units in
which Boltzmann’s constant is 1.

Writing the partition function of a finite sample with periodic boundary
conditions explicitly gives

Z (T ) =
|E0|/2∑

n=0

exp(Sn − S0 − 4n/T ). (10)

The heat capacity is then

C(L , T ) = (T 2 Z )−1
|E0|/2∑

n=0

16(n − n∗)2 exp(Sn − S0 − 4n/T ), (11)

where n∗ is the value of n for which the argument of the exponential has its
maximum for a given sample at temperature T .

The average values of Sn − S0 for small values of n are shown in Fig. 5, over
our full range of L . The slope defined by these points, omitting the n = 1 points, is
plotted versus 1/L in Fig. 6. The limiting value of this slope for large L obtained
from this plot is found to be

ψ = 0.842 ± 0.003. (12)

This means that for n � L2

Sn − S0 ≈ f (L)nψ, (13)

and implies

(n∗(L , T ))1−ψ ≈ ψ f (L)T/4. (14)

This can only be valid, however, if 0 < n∗ � L2. If we take the limit T → 0,
holding L fixed, then n∗ → 0. Thus the limiting low temperature behavior of
C(L , T ), for any fixed L is proportional to exp(−4/T ), as it must be. We expect
to see this behavior when T < T1, where

T1(L) = 4[L2(2 ln(L) − 1)]−ρ/(ψ A) (15)

is the temperature where n∗ = 1. We have found a positive value for ρ, which
means that T1 → 0 as L → ∞.

The reason for omitting the n = 1 points shown in Fig. 5 from the fits is that
they all lie well below the straight lines. The quantity S1 − S0 does not behave in
the same way that the other Sn+1 − Sn do. The author understands this effect by



1120 Fisch

0.8 1 2 4 6 8 10 20 
4

6

8

10

20

40

60

80

100

200
2D ISG
p=0.5

av
(S

n -
 S

0
)

n

 L=48
 L=32
 L=24
 L=16
 L=12
 L= 8

Fig. 5. (color online) Scaling of av(Sn − S0) with L , for small values of n. The axes are scaled
logarithmically.

analogy with the well-known behavior of random matrices. The gap at the band
edge is special, because it only feels level repulsion from one side.

Substituting our expressions for n∗ and Sn − S0 into Eq. (10) gives

C(L , T )

= 16T −2

∑|E0|/2
n=0

(
n − (ψ AT/4)1/(1−ψ)(L2(2 ln(L) − 1))ρ/(1−ψ)

)2
exp(g(n, L))

∑|E0|/2
n=0 exp(g(n, L))

,

(16)

where

g(n, L) = nψ [A(L2(2 ln(L) − 1))ρ − 4n1−ψ/T ] . (17)

When we try to take the limit L → ∞ holding T fixed, we get a surprise. The
exponent ρ/(1 − ψ) is 1.216 ± 0.033. Because this exponent is greater than than
1, the power-law behavior described by the exponent of Eq. (12) is only valid for
T < Tx , where Tx must go to zero as L increases. n∗ cannot become larger than
L2! This condition requires that, when L → ∞, Tx must also go to zero at least
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Fig. 6. (color online) Slope of av(Sn − S0) vs. 1/L , for n = 2 to 8.

as fast as

Tx (L) ∼ 4L−2(ρ+ψ−1)(2 ln(L) − 1)−ρ/(ψ A). (18)

Although we do not have data to show that Tx actually behaves precisely in this
way, it is at least plausible that Tx goes to zero more slowly than T1 as L increases,
since ψ < 1.

What this means is that the singularity we are studying is subextensive,
just as the thermal singularity above Tg is in the TAP mean-field theory. (1,3)

It also means that for L large, but finite, we expect there exists a temperature
regime T1 � T � Tx in which the scaling behavior controlled by this singularity
is observable.

ρ controls the thermal behavior in the temperature range 0 < T < T1, and
ψ controls the behavior in the range T1 < T < Tx . Therefore, these exponents
are independent. A simple scaling relation between exponents defined in different
ranges of T which have independent behaviors is impossible. This statement is not
in contradiction with the fact that the value of Tx clearly depends on both ρ and ψ .
The entire procedure used here is quite similar to the theory of nested boundary
layers. (22)

Since 〈E(L)〉 is essentially 4n∗(L , T ), the heat capacity for T1 < T < Tx is
easily seen to be proportional to T ψ/(1−ψ), which is T 5.33±0.12. Because Tx → 0
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as L → ∞, this behavior disappears in the thermodynamic limit. The exponent
2(ρ + ψ − 1) is 0.068 ± 0.009. This is small, so Tx is going to zero quite slowly.
Thus the power-law behavior of C(L , T ) should be visible for macroscopic values
of L . Note that this effect is not caused by our choice of logarithmic averag-
ing of S1 − S0, since the use of simple averaging would give a larger value for
ρ.

Although our statistical errors are small, the estimate of ρ depends on our
choice of the finite-size scaling fitting function. Notice that the estimate of the
scaling exponent α for the T dependence of C(L , T ) depends only on ψ , and is
independent of ρ. Therefore, our estimate

α = −5.33 ± 0.12 (19)

is independent of whether Tx → 0 as L → ∞.
All of the calculations for p = 0.5 described above were repeated for

p = 0.25. Using the same procedures as discussed above, we find for p = 0.25
the exponents ρ = 0.1874 ± 0.0019 and ψ = 0.8527 ± 0.0017. Therefore we
obtain 2(ρ + ψ − 1) = 0.080 ± 0.007 and α = −5.79 ± 0.08. These results are
quite consistent with universality of the critical exponents, since the quoted sta-
tistical errors do not include any allowance for errors in the assumed scaling
forms.

Recently, Jörg et al. (11) have claimed that a power-law behavior of C(L , T ) is
evidence that the QDE is in the same universality class as the CDE. However, they
have not calculated α directly. They have calculated the correlation length exponent
ν ≈ 3.5, and assumed that α could be obtained via the modified hyperscaling
relation of Baker and Bonner. (23) The fact that our value of α is not close to −7
shows that this relation is not obeyed. Our value seems to indicate that the ordinary
hyperscaling relation, dν = 2 − α, is obeyed. α has never been calculated directly
for the CDE, so we cannot say whether the values of α are the same for the QDE
and the CDE.

Finally, we discuss the origin of the subextensive singularity. Such behavior
in a 2D model probably requires the existence of some kind of long-range interac-
tions. Such interactions are not present explicitly in our Hamiltonian, Eq. (1), but
they may arise spontaneously. Since domain walls are extended objects, it would
not be very surprising for interactions between domain walls to have long range,
especially at T = 0.

Using the same computer program which was used here to obtain the heat
capacity and additional procedures described in a recent publication, (6) we have
calculated the average domain-wall entropy for zero-energy domain walls on lat-
tices of size L × M , where L ≤ M . Remarkably, the average domain-wall entropy
for the zero-energy domain walls which run across the lattice in the short (L)
direction scales to zero exponentially in the variable M/L1.25. This is shown
in Fig. 7. The exponent 1.25 is suggestive of the relation recently proposed
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by Amoruso, Hartmann, Hastings and Moore, (24) which gives a value of 1.25
for the fractal dimension of domain walls for this model. From the data dis-
played here we can say that this exponent must be 1.25 ± 0.05. Because their
entropy scales to zero so rapidly, these zero-energy domain walls must be highly
correlated.

This effect is strong evidence for long-range interactions between the zero-
energy domain walls. It does not occur for domain walls of other energies. Amoruso
et al. do not explicitly specify that the behavior of the zero-energy domain walls
should be special. However, this was suggested by the work of Wang, Harrington
and Preskill. (25) This domain-wall entropy calculation will be described more fully
in a subsequent publication. (26)

In this work we have calculated in detail the low temperature thermal behavior
of the 2D Ising spin glass with an equal mixture of +1 and −1 bonds. We have
found that this behavior bears a strong qualitative resemblance to the behavior
found in the TAP mean-field-theory analysis. For finite L there is a range of T for
which C(L , T ) is proportional to T 5.33. However, this behavior disappears slowly
as L → ∞. This subextensive behavior is attributed to correlations between zero-
energy domain walls.
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